Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
J Mol Biol ; 436(4): 168410, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135179

RESUMO

Base excision repair (BER) requires a coordination from gap filling by DNA polymerase (pol) ß to subsequent nick sealing by DNA ligase (LIG) IIIα at downstream steps of the repair pathway. X-ray cross-complementing protein 1 (XRCC1), a non-enzymatic scaffolding protein, forms repair complexes with polß and LIGIIIα. Yet, the impact of the polß mutations that affect XRCC1 interaction and protein stability on the repair pathway coordination during nick sealing by LIGIIIα remains unknown. Our results show that the polß colon cancer-associated variant T304 exhibits a reduced interaction with XRCC1 and the mutations in the interaction interface of V303 loop (L301R/V303R/V306R) and at the lysine residues (K206A/K244A) that prevent ubiquitin-mediated degradation of the protein exhibit a diminished repair protein complex formation with XRCC1. Furthermore, we demonstrate no significant effect on gap and nick DNA binding affinity of wild-type polß by these mutations. Finally, our results reveal that XRCC1 leads to an efficient channeling of nick repair products after nucleotide incorporation by polß variants to LIGIIIα, which is compromised by the L301R/V303R/V306R and K206A/K244A mutations. Overall, our findings provide insight into how the mutations in the polß/XRCC1 interface and the regions affecting protein stability could dictate accurate BER pathway coordination at the downstream steps involving nick sealing by LIGIIIα.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Ligase Dependente de ATP , DNA Polimerase beta , 60562 , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , DNA Ligase Dependente de ATP/química , DNA Polimerase beta/química , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/química , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Humanos , Ligação Proteica
2.
Proc Natl Acad Sci U S A ; 119(10): e2118940119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238634

RESUMO

SignificanceBase excision repair (BER) is one of the major DNA repair pathways used to fix a myriad of cellular DNA lesions. The enzymes involved in BER, including DNA polymerase ß (Polß), have been identified and characterized, but how they act together to efficiently perform BER has not been fully understood. Through gel electrophoresis, mass spectrometry, and kinetic analysis, we discovered that the two enzymatic activities of Polß can be interlocked, rather than functioning independently from each other, when processing DNA intermediates formed in BER. The finding prompted us to hypothesize a modified BER pathway. Through conventional and time-resolved X-ray crystallography, we solved 11 high-resolution crystal structures of cross-linked Polß complexes and proposed a detailed chemical mechanism for Polß's 5'-deoxyribose-5-phosphate lyase activity.


Assuntos
Dano ao DNA , DNA Polimerase beta/metabolismo , Reparo do DNA , Cristalografia por Raios X , DNA/metabolismo , DNA Polimerase beta/química , Eletroforese em Gel de Poliacrilamida , Cinética , Espectrometria de Massas/métodos , Conformação Proteica , Bases de Schiff/química , Especificidade por Substrato
3.
Crit Rev Oncog ; 27(2): 17-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36734870

RESUMO

DNA polymerase beta (Pol ß) is a 39 kD vertebrate polymerase that lacks proofreading ability, yet still maintains a moderate fidelity of DNA synthesis. Pol ß is a key enzyme that functions in the base excision repair and non-homologous end joining pathways of DNA repair. Mechanisms of fidelity for Pol ß are still being elucidated but are likely to involve dynamic conformational motions of the enzyme upon its binding to DNA and deoxynucleoside triphosphates. Recent studies have linked germline and somatic variants of Pol ß with cancer and autoimmunity. These variants induce genomic instability by a number of mechanisms, including error-prone DNA synthesis and accumulation of single nucleotide gaps that lead to replication stress. Here, we review the structure and function of Pol ß, and we provide insights into how structural changes in Pol ß variants may contribute to genomic instability, mutagenesis, disease, cancer development, and impacts on treatment outcomes.


Assuntos
DNA Polimerase beta , Neoplasias , Humanos , DNA Polimerase beta/genética , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Replicação do DNA/genética , DNA/genética , Reparo do DNA/genética , Instabilidade Genômica , Neoplasias/genética
4.
Biochem J ; 478(9): 1769-1781, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33881499

RESUMO

Nucleobases within DNA are attacked by reactive oxygen species to produce 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major oxidative lesions. The high mutagenicity of oxoG is attributed to the lesion's ability to adopt syn-oxoG:anti-dA with Watson-Crick-like geometry. Recent studies have revealed that Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) inserts nucleotide opposite oxoA in an error-prone manner and accommodates syn-oxoA:anti-dGTP with Watson-Crick-like geometry, highlighting a promutagenic nature of oxoA. To gain further insights into the bypass of oxoA by Dpo4, we have conducted kinetic and structural studies of Dpo4 extending oxoA:dT and oxoA:dG by incorporating dATP opposite templating dT. The extension past oxoA:dG was ∼5-fold less efficient than that past oxoA:dT. Structural studies revealed that Dpo4 accommodated dT:dATP base pair past anti-oxoA:dT with little structural distortion. In the Dpo4-oxoA:dG extension structure, oxoA was in an anti conformation and did not form hydrogen bonds with the primer terminus base. Unexpectedely, the dG opposite oxoA exited the primer terminus site and resided in an extrahelical site, where it engaged in minor groove contacts to the two immediate upstream bases. The extrahelical dG conformation appears to be induced by the stabilization of anti-oxoA conformation via bifurcated hydrogen bonds with Arg332. This unprecedented structure suggests that Dpo4 may use Arg332 to sense 8-oxopurines at the primer terminus site and slow the extension from the mismatch by promoting anti conformation of 8-oxopurines.


Assuntos
Adenina/análogos & derivados , Proteínas Arqueais/química , DNA Polimerase beta/química , Guanina/análogos & derivados , Sulfolobus solfataricus/enzimologia , Adenina/química , Adenina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Guanina/química , Guanina/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sulfolobus solfataricus/química , Sulfolobus solfataricus/genética , Termodinâmica
5.
Biochemistry ; 60(5): 373-380, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33475337

RESUMO

DNA polymerases play vital roles in the maintenance and replication of genomic DNA by synthesizing new nucleotide polymers using nucleoside triphosphates as substrates. Deoxynucleoside triphosphates (dNTPs) are the canonical substrates for DNA polymerases; however, some bacterial polymerases have been demonstrated to insert deoxynucleoside diphosphates (dNDPs), which lack a third phosphate group, the γ-phosphate. Whether eukaryotic polymerases can efficiently incorporate dNDPs has not been investigated, and much about the chemical or structural role played by the γ-phosphate of dNTPs remains unknown. Using the model mammalian polymerase (Pol) ß, we examine how Pol ß incorporates a substrate lacking a γ-phosphate [deoxyguanosine diphosphate (dGDP)] utilizing kinetic and crystallographic approaches. Using single-turnover kinetics, we determined dGDP insertion across a templating dC by Pol ß to be drastically impaired when compared to dGTP insertion. We found the most significant impairment in the apparent insertion rate (kpol), which was reduced 32000-fold compared to that of dGTP insertion. X-ray crystal structures revealed similar enzyme-substrate contacts for both dGDP and dGTP. These findings suggest the insertion efficiency of dGDP is greatly decreased due to impairments in polymerase chemistry. This work is the first instance of a mammalian polymerase inserting a diphosphate nucleotide and provides insight into the nature of polymerase mechanisms by highlighting how these enzymes have evolved to use triphosphate nucleotide substrates.


Assuntos
DNA Polimerase beta/química , Nucleotídeos de Desoxiguanina/química , DNA/química , DNA Polimerase beta/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Desoxiguanosina/química , Difosfatos/química , Humanos , Cinética , Especificidade por Substrato
6.
J Mol Biol ; 433(4): 166806, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33450246

RESUMO

The full-length CUX1 protein isoform was previously shown to function as an auxiliary factor in base excision repair (BER). Specifically, CUT domains within CUX1 stimulate the enzymatic activities of the OGG1 DNA glycosylase and APE1 endonuclease. Moreover, ectopic expression of CUX1 or CUT domains increased the resistance of cancer cells to treatments that cause oxidative DNA damage and mono-alkylation of bases. Stimulation of OGG1 AP/lyase and APE1 endonuclease activities, however, cannot explain how CUT domains confer resistance to these treatments since these enzymes produce DNA single-strand breaks that are highly toxic to cells. In the present study, we show that CUT domains stimulate the polymerase and deoxyribose phosphate (dRP)-lyase activities of DNA polymerase ß to promote BER completion. In agreement with these results, CUX1 knockdown decreases BER completion in cell extracts and causes an increase in the number of abasic sites in genomic DNA following temozolomide treatment. We also show that CUT domains stimulate bypass of intrastrand G-crosslinks by Pol ß in vitro, while the resistance of cancer cells to cisplatin treatment is reduced by CUX1 knockdown but restored by ectopic expression of CUT domains. Altogether our results establish CUX1 as an important auxiliary factor that stimulates multiple steps of base excision repair, from the recognition and removal of altered bases to the addition of new nucleotides and removal of 5'-deoxyribose phosphate required for ligation and BER completion. These findings provide a mechanistic explanation for the observed correlation between CUX1 expression and the resistance of cancer cells to genotoxic treatments.


Assuntos
DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Reparo do DNA , Domínios e Motivos de Interação entre Proteínas , Sítios de Ligação , Linhagem Celular , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ativação Enzimática , Técnicas de Inativação de Genes , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Ligação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Biomolecules ; 10(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302546

RESUMO

Archaeal DNA polymerases from the B-family (polB) have found essential applications in biotechnology. In addition, some of their variants can accept a wide range of modified nucleotides or xenobiotic nucleotides, such as 1,5-anhydrohexitol nucleic acid (HNA), which has the unique ability to selectively cross-pair with DNA and RNA. This capacity is essential to allow the transmission of information between different chemistries of nucleic acid molecules. Variants of the archaeal polymerase from Thermococcus gorgonarius, TgoT, that can either generate HNA from DNA (TgoT_6G12) or DNA from HNA (TgoT_RT521) have been previously identified. To understand how DNA and HNA are recognized and selected by these two laboratory-evolved polymerases, we report six X-ray structures of these variants, as well as an in silico model of a ternary complex with HNA. Structural comparisons of the apo form of TgoT_6G12 together with its binary and ternary complexes with a DNA duplex highlight an ensemble of interactions and conformational changes required to promote DNA or HNA synthesis. MD simulations of the ternary complex suggest that the HNA-DNA hybrid duplex remains stable in the A-DNA helical form and help explain the presence of mutations in regions that would normally not be in contact with the DNA if it were not in the A-helical form. One complex with two incorporated HNA nucleotides is surprisingly found in a one nucleotide-backtracked form, which is new for a DNA polymerase. This information can be used for engineering a new generation of more efficient HNA polymerase variants.


Assuntos
Proteínas Arqueais/química , DNA Polimerase beta/química , DNA Arqueal/química , Hexosefosfatos/química , Nucleotídeos/química , RNA Arqueal/química , Thermococcus/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Arqueal/genética , DNA Arqueal/metabolismo , Evolução Molecular Direcionada/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hexosefosfatos/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Nucleotídeos/genética , Nucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , RNA Arqueal/genética , RNA Arqueal/metabolismo , Especificidade por Substrato , Thermococcus/enzimologia
8.
DNA Repair (Amst) ; 93: 102928, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33087265

RESUMO

DNA polymerase ß (Pol ß) is an essential mammalian enzyme involved in the repair of DNA damage during the base excision repair (BER) pathway. In hopes of faithfully restoring the coding potential to damaged DNA during BER, Pol ß first uses a lyase activity to remove the 5'-deoxyribose phosphate moiety from a nicked BER intermediate, followed by a DNA synthesis activity to insert a nucleotide triphosphate into the resultant 1-nucleotide gapped DNA substrate. This DNA synthesis activity of Pol ß has served as a model to characterize the molecular steps of the nucleotidyl transferase mechanism used by mammalian DNA polymerases during DNA synthesis. This is in part because Pol ß has been extremely amenable to X-ray crystallography, with the first crystal structure of apoenzyme rat Pol ß published in 1994 by Dr. Samuel Wilson and colleagues. Since this first structure, the Wilson lab and colleagues have published an astounding 267 structures of Pol ß that represent different liganded states, conformations, variants, and reaction intermediates. While many labs have made significant contributions to our understanding of Pol ß, the focus of this article is on the long history of the contributions from the Wilson lab. We have chosen to highlight select seminal Pol ß structures with emphasis on the overarching contributions each structure has made to the field.


Assuntos
Cristalografia por Raios X/história , DNA Polimerase beta/metabolismo , Animais , Bioquímica/história , DNA Polimerase beta/química , Reparo do DNA , Replicação do DNA , História do Século XX , História do Século XXI , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Modelos Moleculares , Conformação Proteica , Ratos , Especificidade por Substrato
9.
Elife ; 92020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33079059

RESUMO

The way in which multidomain proteins fold has been a puzzling question for decades. Until now, the mechanisms and functions of domain interactions involved in multidomain protein folding have been obscure. Here, we develop structure-based models to investigate the folding and DNA-binding processes of the multidomain Y-family DNA polymerase IV (DPO4). We uncover shifts in the folding mechanism among ordered domain-wise folding, backtracking folding, and cooperative folding, modulated by interdomain interactions. These lead to 'U-shaped' DPO4 folding kinetics. We characterize the effects of interdomain flexibility on the promotion of DPO4-DNA (un)binding, which probably contributes to the ability of DPO4 to bypass DNA lesions, which is a known biological role of Y-family polymerases. We suggest that the native topology of DPO4 leads to a trade-off between fast, stable folding and tight functional DNA binding. Our approach provides an effective way to quantitatively correlate the roles of protein interactions in conformational dynamics at the multidomain level.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Dobramento de Proteína , DNA/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , DNA Polimerase Dirigida por DNA/química , Conformação Proteica , Domínios Proteicos , Termodinâmica
10.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998246

RESUMO

Human apurinic/apyrimidinic endonuclease 1 (APE1) is known to be a critical player of the base excision repair (BER) pathway. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that these proteins interact with APE1 either at upstream or downstream steps of BER. Therefore, we may propose that even a minor disturbance of protein-protein interactions on the DNA template reduces coordination and repair efficiency. Here, the ability of various human DNA repair enzymes (such as DNA glycosylases OGG1, UNG2, and AAG; DNA polymerase Polß; or accessory proteins XRCC1 and PCNA) to influence the activity of wild-type (WT) APE1 and its seven natural polymorphic variants (R221C, N222H, R237A, G241R, M270T, R274Q, and P311S) was tested. Förster resonance energy transfer-based kinetic analysis of abasic site cleavage in a model DNA substrate was conducted to detect the effects of interacting proteins on the activity of WT APE1 and its single-nucleotide polymorphism (SNP) variants. The results revealed that WT APE1 activity was stimulated by almost all tested DNA repair proteins. For the SNP variants, the matters were more complicated. Analysis of two SNP variants, R237A and G241R, suggested that a positive charge in this area of the APE1 surface impairs the protein-protein interactions. In contrast, variant R221C (where the affected residue is located near the DNA-binding site) showed permanently lower activation relative to WT APE1, whereas neighboring SNP N222H did not cause a noticeable difference as compared to WT APE1. Buried substitution P311S had an inconsistent effect, whereas each substitution at the DNA-binding site, M270T and R274Q, resulted in the lowest stimulation by BER proteins. Protein-protein molecular docking was performed between repair proteins to identify amino acid residues involved in their interactions. The data uncovered differences in the effects of BER proteins on APE1, indicating an important role of protein-protein interactions in the coordination of the repair pathway.


Assuntos
DNA Glicosilases/química , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA/química , Substituição de Aminoácidos , Sítios de Ligação , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Expressão Gênica , Humanos , Cinética , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/química , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
11.
Nucleic Acids Res ; 48(18): 10142-10156, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976577

RESUMO

B-family DNA polymerases (PolBs) represent the most common replicases. PolB enzymes that require RNA (or DNA) primed templates for DNA synthesis are found in all domains of life and many DNA viruses. Despite extensive research on PolBs, their origins and evolution remain enigmatic. Massive accumulation of new genomic and metagenomic data from diverse habitats as well as availability of new structural information prompted us to conduct a comprehensive analysis of the PolB sequences, structures, domain organizations, taxonomic distribution and co-occurrence in genomes. Based on phylogenetic analysis, we identified a new, widespread group of bacterial PolBs that are more closely related to the catalytically active N-terminal half of the eukaryotic PolEpsilon (PolEpsilonN) than to Escherichia coli Pol II. In Archaea, we characterized six new groups of PolBs. Two of them show close relationships with eukaryotic PolBs, the first one with PolEpsilonN, and the second one with PolAlpha, PolDelta and PolZeta. In addition, structure comparisons suggested common origin of the catalytically inactive C-terminal half of PolEpsilon (PolEpsilonC) and PolAlpha. Finally, in certain archaeal PolBs we discovered C-terminal Zn-binding domains closely related to those of PolAlpha and PolEpsilonC. Collectively, the obtained results allowed us to propose a scenario for the evolution of eukaryotic PolBs.


Assuntos
DNA Polimerase beta/química , DNA Polimerase beta/classificação , Eucariotos/enzimologia , Evolução Molecular , Archaea/enzimologia , Bactérias/enzimologia , Vírus de DNA/enzimologia , Bases de Dados de Proteínas
12.
Genes (Basel) ; 11(8)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751599

RESUMO

In the base excision repair pathway, the initiating enzymes, DNA glycosylases, remove damaged bases and form long-living complexes with the abasic DNA product, but can be displaced by AP endonucleases. However, many nuclear proteins can move along DNA, either actively (such as DNA or RNA polymerases) or by passive one-dimensional diffusion. In most cases, it is not clear whether this movement is disturbed by other bound proteins or how collisions with moving proteins affect the bound proteins, including DNA glycosylases. We have used a two-substrate system to study the displacement of human OGG1 and NEIL1 DNA glycosylases by DNA polymerases in both elongation and diffusion mode and by D4, a passively diffusing subunit of a viral DNA polymerase. The OGG1-DNA product complex was disrupted by DNA polymerase ß (POLß) in both elongation and diffusion mode, Klenow fragment (KF) in the elongation mode and by D4. NEIL1, which has a shorter half-life on DNA, was displaced more efficiently. Hence, both possibly specific interactions with POLß and nonspecific collisions (KF, D4) can displace DNA glycosylases from DNA. The protein movement along DNA was blocked by very tightly bound Cas9 RNA-targeted nuclease, providing an upper limit on the efficiency of obstacle clearance.


Assuntos
DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , DNA/metabolismo , Sítios de Ligação , Proteína 9 Associada à CRISPR/metabolismo , DNA/química , DNA/genética , Dano ao DNA , DNA Glicosilases/química , DNA Polimerase I/metabolismo , DNA Polimerase beta/química , Reparo do DNA , Humanos , Ligação Proteica
13.
Biochemistry ; 59(36): 3359-3367, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822531

RESUMO

Inteins are selfish genetic elements residing in open reading frames that can splice post-translationally, resulting in the ligation of an uninterrupted, functional protein. Like other inteins, the DNA polymerase B (PolB) intein of the halophilic archaeon Haloferax volcanii has an active homing endonuclease (HEN) domain, facilitating its horizontal transmission. Previous work has shown that the presence of the PolB intein exerts a significant fitness cost on the organism compared to an intein-free isogenic H. volcanii. Here, we show that mutation of a conserved residue in the HEN domain not only reduces intein homing but also slows growth. Surprisingly, although this mutation is far from the protein splicing active site, it also significantly reduces in vitro protein splicing. Moreover, two additional HEN domain mutations, which could not be introduced to H. volcanii, presumably due to lethality, also eliminate protein splicing activity in vitro. These results suggest an interplay between HEN residues and the protein splicing domain, despite an over 35 Å separation in a PolB intein homology model. The combination of in vivo and in vitro evidence strongly supports a model of codependence between the self-splicing domain and the HEN domain that has been alluded to by previous in vitro studies of protein splicing with HEN domain-containing inteins.


Assuntos
Proteínas Arqueais/metabolismo , DNA Polimerase beta/metabolismo , Endonucleases/genética , Haloferax volcanii/enzimologia , Inteínas , Mutação , Processamento de Proteína , Proteínas Arqueais/química , Proteínas Arqueais/genética , Domínio Catalítico , DNA Polimerase beta/química , DNA Polimerase beta/genética , Haloferax volcanii/genética , Haloferax volcanii/crescimento & desenvolvimento , Simulação de Dinâmica Molecular , Conformação Proteica
14.
J Biol Chem ; 295(40): 13902-13913, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32763971

RESUMO

Trinucleotide repeat (TNR) expansion and deletion are responsible for over 40 neurodegenerative diseases and associated with cancer. TNRs can undergo somatic instability that is mediated by DNA damage and repair and gene transcription. Recent studies have pointed toward a role for R-loops in causing TNR expansion and deletion, and it has been shown that base excision repair (BER) can result in CAG repeat deletion from R-loops in yeast. However, it remains unknown how BER in R-loops can mediate TNR instability. In this study, using biochemical approaches, we examined BER enzymatic activities and their influence on TNR R-loops. We found that AP endonuclease 1 incised an abasic site on the nontemplate strand of a TNR R-loop, creating a double-flap intermediate containing an RNA:DNA hybrid that subsequently inhibited polymerase ß (pol ß) synthesis of TNRs. This stimulated flap endonuclease 1 (FEN1) cleavage of TNRs engaged in an R-loop. Moreover, we showed that FEN1 also efficiently cleaved the RNA strand, facilitating pol ß loop/hairpin bypass synthesis and the resolution of TNR R-loops through BER. Consequently, this resulted in fewer TNRs synthesized by pol ß than those removed by FEN1, thereby leading to repeat deletion. Our results indicate that TNR R-loops preferentially lead to repeat deletion during BER by disrupting the balance between the addition and removal of TNRs. Our discoveries open a new avenue for the treatment and prevention of repeat expansion diseases and cancer.


Assuntos
DNA Polimerase beta/química , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Endonucleases Flap/química , Estruturas R-Loop , Repetições de Trinucleotídeos , Humanos
15.
J Biol Chem ; 295(34): 12181-12187, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32647014

RESUMO

DNA polymerase (pol) ß catalyzes two reactions at DNA gaps generated during base excision repair, gap-filling DNA synthesis and lyase-dependent 5´-end deoxyribose phosphate removal. The lyase domain of pol ß has been proposed to function in DNA gap recognition and to facilitate DNA scanning during substrate search. However, the mechanisms and molecular interactions used by pol ß for substrate search and recognition are not clear. To provide insight into this process, a comparison was made of the DNA binding affinities of WT pol ß, pol λ, and pol µ, and several variants of pol ß, for 1-nt-gap-containing and undamaged DNA. Surprisingly, this analysis revealed that mutation of three lysine residues in the lyase active site of pol ß, 35, 68, and 72, to alanine (pol ß KΔ3A) increased the binding affinity for nonspecific DNA ∼11-fold compared with that of the WT. WT pol µ, lacking homologous lysines, displayed nonspecific DNA binding behavior similar to that of pol ß KΔ3A, in line with previous data demonstrating both enzymes were deficient in processive searching. In fluorescent microscopy experiments using mouse fibroblasts deficient in PARP-1, the ability of pol ß KΔ3A to localize to sites of laser-induced DNA damage was strongly decreased compared with that of WT pol ß. These data suggest that the three lysines in the lyase active site destabilize pol ß when bound to DNA nonspecifically, promoting DNA scanning and providing binding specificity for gapped DNA.


Assuntos
Dano ao DNA , DNA Polimerase beta/química , DNA/química , Animais , Domínio Catalítico , DNA/genética , DNA/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Estabilidade Enzimática/genética , Humanos , Camundongos , Ligação Proteica
16.
Biochem J ; 477(15): 2859-2871, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32686822

RESUMO

Reactive oxygen species induced by ionizing radiation and metabolic pathways generate 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as two major forms of oxidative damage. The mutagenicity of oxoG, which promotes G to T transversions, is attributed to the lesion's conformational flexibility that enables Hoogsteen base pairing with dATP in the confines of DNA polymerases. The mutagenesis mechanism of oxoA, which preferentially causes A to C transversions, remains poorly characterized. While structures for oxoA bypass by human DNA polymerases are available, that of prokaryotic DNA polymerases have not been reported. Herein, we report kinetic and structural characterizations of Sulfolobus solfataricus Dpo4 incorporating a nucleotide opposite oxoA. Our kinetic studies show oxoA at the templating position reduces the replication fidelity by ∼560-fold. The catalytic efficiency of the oxoA:dGTP insertion is ∼300-fold greater than that of the dA:dGTP insertion, highlighting the promutagenic nature of oxoA. The relative efficiency of the oxoA:dGTP misincorporation is ∼5-fold greater than that of the oxoG:dATP misincorporation, suggesting the mutagenicity of oxoA is comparable to that of oxoG. In the Dpo4 replicating base pair site, oxoA in the anti-conformation forms a Watson-Crick base pair with an incoming dTTP, while oxoA in the syn-conformation assumes Hoogsteen base pairing with an incoming dGTP, displaying the dual coding potential of the lesion. Within the Dpo4 active site, the oxoA:dGTP base pair adopts a Watson-Crick-like geometry, indicating Dpo4 influences the oxoA:dGTP base pair conformation. Overall, the results reported here provide insights into the miscoding properties of the major oxidative adenine lesion during translesion synthesis.


Assuntos
Adenina/análogos & derivados , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Sulfolobus solfataricus/genética , Adenina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Pareamento de Bases , Domínio Catalítico , DNA Polimerase beta/genética , Reparo do DNA , DNA Bacteriano/biossíntese , Guanosina Trifosfato/metabolismo , Mutagênicos/metabolismo , Conformação Proteica , Sulfolobus solfataricus/metabolismo , Tiamina/metabolismo
17.
Commun Biol ; 3(1): 348, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620932

RESUMO

Adenine frequently pairs with the Hoogsteen edge of an oxidized guanine base (8OG) causing G to T transversions. The (syn)8OG:dA base pair is indistinguishable from the cognant base pair and can be extended by DNA polymerases with reduced efficiency. To examine the structural basis of this reduced efficiency, we sought to obtain the structure of the "product" complex of DNA polymerase (pol) ß with the (syn)8OG:dA base pair at the primer terminus by soaking the binary complex crystals with a hydrolysable dCTP analogue complementary to the template base G. Crystallographic refinement of the structure revealed that the adenine of the (syn)8OG:dA base pair had been expelled from the primer terminus and a dCMP was inserted opposite 8OG in a reverse orientation; another uninserted molecule of the analogue was bound to the templating base G. This leads to an abortive complex that could form the basis of oxidatively-induced pol ß stalling.


Assuntos
Adenina/química , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Primers do DNA/química , Primers do DNA/metabolismo , Guanina/química , Humanos , Conformação Proteica
18.
J Am Chem Soc ; 142(25): 11183-11191, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32459476

RESUMO

DNA bases can adopt energetically unfavorable tautomeric forms that enable the formation of Watson-Crick-like (WC-like) mispairs, which have been proposed to give rise to spontaneous mutations in DNA and misincorporation errors in DNA replication and translation. Previous NMR and computational studies have indicated that the population of WC-like guanine-thymine (G-T) mispairs depends on the environment, such as the local nucleic acid sequence and solvation. To investigate these environmental effects, herein G-T mispair tautomerization processes are studied computationally in aqueous solution, in A-form and B-form DNA duplexes, and within the active site of a DNA polymerase λ variant. The wobble G-T (wG-T), WC-like G-T*, and WC-like G*-T forms are considered, where * indicates the enol tautomer of the base. The minimum free energy paths for the tautomerization from the wG-T to the WC-like G-T* and from the WC-like G-T* to the WC-like G*-T are computed with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The reaction free energies and free energy barriers are found to be significantly influenced by the environment. The wG-T→G-T* tautomerization is predicted to be endoergic in aqueous solution and the DNA duplexes but slightly exoergic in the polymerase, with Arg517 and Asn513 providing electrostatic stabilization of G-T*. The G-T*→G*-T tautomerization is also predicted to be slightly more thermodynamically favorable in the polymerase relative to these DNA duplexes. These simulations are consistent with an experimentally driven kinetic misincorporation model suggesting that G-T mispair tautomerization occurs in the ajar polymerase conformation or concertedly with the transition from the ajar to the closed polymerase conformation. Furthermore, the order of the associated two proton transfer reactions is predicted to be different in the polymerase than in aqueous solution and the DNA duplexes. These studies highlight the impact of the environment on the thermodynamics, kinetics, and fundamental mechanisms of G-T mispair tautomerization, which plays a role in a wide range of biochemically important processes.


Assuntos
DNA Forma A/química , DNA de Forma B/química , Pareamento Incorreto de Bases , Pareamento de Bases , Domínio Catalítico , DNA Polimerase beta/química , DNA Forma A/genética , DNA de Forma B/genética , Guanina/química , Isomerismo , Modelos Moleculares , Teoria Quântica , Termodinâmica , Timina/química
19.
Nucleic Acids Res ; 48(9): 5119-5134, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32282906

RESUMO

Reactive oxygen species generate the genotoxic 8-oxoguanine (oxoG) and 8-oxoadenine (oxoA) as major oxidative lesions. The mutagenicity of oxoG is attributed to the lesion's ability to evade the geometric discrimination of DNA polymerases by adopting Hoogsteen base pairing with adenine in a Watson-Crick-like geometry. Compared with oxoG, the mutagenesis mechanism of oxoA, which preferentially induces A-to-C mutations, is poorly understood. In the absence of protein contacts, oxoA:G forms a wobble conformation, the formation of which is suppressed in the catalytic site of most DNA polymerases. Interestingly, human DNA polymerase η (polη) proficiently incorporates dGTP opposite oxoA, suggesting the nascent oxoA:dGTP overcomes the geometric discrimination of polη. To gain insights into oxoA-mediated mutagenesis, we determined crystal structures of polη bypassing oxoA. When paired with dGTP, oxoA adopted a syn-conformation and formed Hoogsteen pairing while in a wobble geometry, which was stabilized by Gln38-mediated minor groove contacts to oxoA:dGTP. Gln38Ala mutation reduced misinsertion efficiency ∼55-fold, indicating oxoA:dGTP misincorporation was promoted by minor groove interactions. Also, the efficiency of oxoA:dGTP insertion by the X-family polß decreased ∼380-fold when Asn279-mediated minor groove contact to dGTP was abolished. Overall, these results suggest that, unlike oxoG, oxoA-mediated mutagenesis is greatly induced by minor groove interactions.


Assuntos
Adenina/análogos & derivados , DNA Polimerase Dirigida por DNA/química , Mutagênese , Adenina/química , Pareamento de Bases , DNA Polimerase beta/química , DNA Polimerase beta/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxiguanina/química , Nucleotídeos de Desoxiguanina/metabolismo , Humanos , Cinética , Mutação , Nucleotídeos de Timina/metabolismo
20.
Nucleic Acids Res ; 48(7): 3708-3721, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32140717

RESUMO

DNA ligase I and DNA ligase III/XRCC1 complex catalyze the ultimate ligation step following DNA polymerase (pol) ß nucleotide insertion during base excision repair (BER). Pol ß Asn279 and Arg283 are the critical active site residues for the differentiation of an incoming nucleotide and a template base and the N-terminal domain of DNA ligase I mediates its interaction with pol ß. Here, we show inefficient ligation of pol ß insertion products with mismatched or damaged nucleotides, with the exception of a Watson-Crick-like dGTP insertion opposite T, using BER DNA ligases in vitro. Moreover, pol ß N279A and R283A mutants deter the ligation of the promutagenic repair intermediates and the presence of N-terminal domain of DNA ligase I in a coupled reaction governs the channeling of the pol ß insertion products. Our results demonstrate that the BER DNA ligases are compromised by subtle changes in all 12 possible noncanonical base pairs at the 3'-end of the nicked repair intermediate. These findings contribute to understanding of how the identity of the mismatch affects the substrate channeling of the repair pathway and the mechanism underlying the coordination between pol ß and DNA ligase at the final ligation step to maintain the BER efficiency.


Assuntos
Pareamento Incorreto de Bases , DNA Ligase Dependente de ATP/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA , Domínio Catalítico , DNA Polimerase beta/química , DNA Polimerase beta/genética , Nucleotídeos de Desoxiguanina/metabolismo , Humanos , Mutagênese , Mutação , Especificidade por Substrato , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...